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A generalization is given of the Schiller's approach to the flow in the entrance region of a tube 
at high Reynolds numbers of an arbitrary model of the generalized Newtonian fluid. Numerical 
solutions are presented for the Eyring model. The generalized Reynolds number of the flow 
in the tube and the apparent flow index introduced in a standard manner can be utilized for 
a generalized solution of the problem of the entrance region by a pseudosimilarity approach. 
The plausibility of this method is confirmed by comparing the results for the power-law, the 
Eyring and the Bingham models. 

The theory of the non-Newtonian flow in the entrance region of a tube has been represented 
predominantly by papers using the power-law model of the generalized Newtonian f}uid l - 5 

(GNF) to describe its rheological properties. The paper of Bogue1 as well as a similar analysis 
of Tyabin and Centkovskij2 are based on the Karman-Pohlhausen method of the integral ba­
lances. Tomita3 has used the variation calculus. A more recent paper by Collins and and Scho­
walter4 applies the Schlichting's method i.e. a combined solution by linear perturbation and the 
boundary layer method. A recent paper of Christians(\n and CarterS attempts solution to the 
complete set of the flow equations by a finite difference method. The last two papers begin with 
relatively realistic mathematical models of the hydrodynamics in the entrance region and their 
results are comparable with the exact solutions for the Newtonian flow6

,7. 

For more sophisticated rheological models, such as e.g. the Bingham8 and the Eyring9 model 
of the GNF and a simple model of viscoelasticity of the Rivlin-Ericksen type10, only various 
solutions based on the Karman-Pohlhausen method of the integral balances have been made 
av.ailable. This method was used for the first time by Schiller11for a Newtonian fluid . 

. In the presented paper the Schiller's hydrodynamic modelll serves to examine 
to what extent the results obtained for the power-law model of the GNF (for which 
numerous exact solutions to the problem of the entrance-flow region are available) 
may be used in case that the viscosity function cannot be characterized by a power 
expression. For this purpose, a method termed the pseudosimilarity approach 
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2698 Wein, Chvojkovli : 

and described in earlier communications12
-

14 will be used. This method compares 
the results of a given hydrodynamic problem for various rheological models in terms 
of an apparent flow index, n*, and a generalized Reynolds number, Re*. The manner 
in which these quantities are introduced is independent of the type of the viscosity 
function and starts from the relation between macroscopic characteristics of a given 
flow pattern13 ,14, which are easy to obtain by experiment. 

A basis of the pseudosimilarity approach applied to the GNF is the assumption 
that the flow of two different GNF possessing possibly substantially different vis­
cosity functions will exhibit approximately identical pattern of the normalized 
velocity, the isotropic pressure and the shear stress tensor fields provided that the 
corresponding values of n* and Re* in both cases are equal. 

This assumption is tested in this paper on the computed results of the hydrodyna­
mics of the entrance-flow region in a tube for the Bingham, the Eyring and the power­
-law models of the GNF. 

A Generalization of the Schiller's Approach to the GNF 

To solve the problem of the hydrodynamics of a Newtonian flow in the entrance 
region of the tube, Schiller has introduced a number of simplifying assumptions 
formulated so as to permit the extension of this approach to an arbitrary model 
of the GNF15

: 

1) The piston flow at the inlet 

Vz = U for z = 0 , (1) 

transforms into a fully developed laminar profile, vD(r), within a finite section - the 
entrance region - of the tube ZE long, 

(2) 

2) The entrance-flow region may be divided into a region of the boundary layer 
near the wall, and the core region surrounding the axis of the tube. In the core 
region one may assume that all deformation' stresses are negligible in comparison 
with the effect of inertia forces. Accordingly, the hydrodynamics of the core flow may be 
stated in terms of the Euler equations of the flow. With respect to the boundary 
condition (1) and this last assumption, the flow withiri the core is a potential one and 
its velocity field is given by 

Vz = vo( z) for r < R - c5( z) , (3) 

where c5(z) is the thickness of the boundary layer. The pressure drop within the core 
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is given by the Bernoulli equation 

dPldz = (eI2) dv~(z)/dz. (4) 

3) Besides the inertia forces and the effects of the isotropic pressure, the only 
important component of the shear stress tensor in the boundary layer, i.e. for R -
- D( z) < r < R is 

(5) 

as follows from the Prandtl equations bf the boundary layer, which may be written 
in the form 

e (Vz aaVzz + vr aaVrz) = _ oP + ~ a(rt'rz) 
• az r ar ' 

(6a,b) 

4) Since we content ourselves with determining the macroscopic characteristics 
and do not seek a detailed description of the velocity field, the problem is thus reduced 
to finding solution to the boundary layer equation which may be solved by the ap­
proximate Karman-Pohlhausen method. This method consists in that we do not 
require that the velocity field satisfy the momentum balance in each point (6a), 
but rather its integral form averaged over the tube cross-section: 

(! - v;r dr = - - - + Kr: ~ . d fR dP R 
2 

[av I ] 
dz 0 dz 2 ar r=R 

(7) 

The approximate solution, of course, has also to satisfy the continuity equation 

(8) 

and the boundary conditions, i.e. the no-slip condition: Vz = 0 for r = R, the axial 
symmetry condition: dvz/dr = 0 for r = 0, and the conditions (1) and (2). 

There is an infinite number of alternatives how to superimpose a velocity field 
satisfying the above listed assumptions; the most common way is to assume the similar­
ity of the velocity profiles within the boundary layer: 

vz(z, r) = vo(z) fey) , (9) 

where y is a normalized radial coordinate in the boundary layer 

r - R + D(Z) 
y = D(Z) (10) 

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973) 



2700 Wein, Chvojkov<i: 

and f(y) is a normalized velocity profile in the boundary layer which from the kinema­
tic boundary conditions has to satisfy the following constraints: f(O) = 1, f(1) = 0, 
1'(0) = 0, f"(y) < 0. It is customary to choose polynomials for f(y), but it seems 
natural to choose f(y) such that it transforms continuously in Z = ZE into the deve­
loped velocity profile given by Eq. (2), e.g . 

f(y) = vo(yR)/Umax (11) 

since for Z = ZE it is b = R and from Eq. (10) thus y = r/R. 
Two parameters remain undetermined in the superimposed expressions for the 

velocity field (9)-(11): The maximum velocity vo(z) and the thickness of the boundary 
layer b(z). These parametric functions can be chosen so as to satisfy the integral 
balances given in Eqs (7) and (8). Substituting for Vz from Eq. (9) into the conti­
nuity equation (8) and after some manipulation one obtaiHs an algebraic relation 
between Vo and b. Eliminating the pressure gradient (-dP/dz) by substituting from 
Eq. (4) into (8) and integrating with the velocity profile given by Eqs (9) - (11) one 
obtains a differential equation in Vo, band z. These equations may be recast in a 
more convenient form by introducing a normalized thickness of the boundary layer 

b* = b/R (12) 
namely: 

d/db*{[1/4 + /31 b* + /32(b*YJ/[1-2IX t b* + 1X2(b*YY db* = _1_ dz, (14) 
't"{[ - 1'(1) U/RJ/[b*(1-2IX t b* + 1X2(b*)2 eU2 R 

where the constants 

IXI = 1 - J:f(Y) dy, 1X2 = 1-2 If(Y)(1 - y) dy , (I5), (16) 

/31 = -1 + IF(Y) dy, /32 = 1/2 - IF(Y)(1 - y) dy (17), (18) : 

depend only on the function f(y), i.e. on the type of the fully developed velocity 
profile vo(r). 

Eq. (14) is integrated with the aid of the initial condition z = ° for b* = 0. The 
value corresponding to b* = 1 gives the length of the entrance region z = z E. 

The pressure drop within the entrance region according to Eq. (4) can be calculated 
from: 

(19) 
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The Hagenbach's correction factor, C, gives the excess pressure drop due to the 
entrance-flow effect in this region over the pressure drop of a fully developed flow 
for which we have 

(20) 

The definition of the factor C may be written for instance in the form: 

where (ilPh stands for the excess pressure drop, i.e. the difference between the total 
pressure drop in the entrance region and that of the region with fully developed 
flow of equivalent length. Thus, using Eq. (19): 

(22a) 

The Dimensionless Formulation 

The Schiller's approach enables the problem to be solved in an approximative manner 
in terms of known characteristics of the fully developed flow in the tube. These 
are fully determined by the viscosity function of the liquid D[r], or r[ D], its density, 
the radius of the tube, R, and by the average velocity of the flow, U, or the pressure 
gradient from Eq. (20) . 

In case of the laminar flow the relations between r w, U and R are generally known 
expressions 

(23), (24) 

where 

(25) 

An arbitrary viscosity function can be normalized 16 by introducing at mos t two 
dimensional parameters Db rj possessing character of material constants of a given 
liquid. The normalized viscosity function may then be written e.g. in the form 

(26a), (26b) 

Under the laminar flow when rw = ~ the relation between tr and rw is only an 
integral transformation of the viscosity function according to Eq. (24) and it see ms 
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therefore natural to normalize it in accord with Eq. (26b) by introducing the fol­
lowing dimensionless parameters A and B. 

(27a) , (27b) 

Between A and B under the iaminar flow we have from Eq. (24) the following relation 

(28) 

In the same way one can write corresponding expressions for the normalized velocity 
field in the boundary layer by means of the given viscosity function p[.9J e.g. 

f(y) = {p[ Ay ] dy I Ip[ Ay ] dy , (29) 

1/1'1 :;= {f(Y) 2y dy = U/U max = (B/4) I Ip[ A y ] d y , (30) 

- 1'(1) = 4Y1P[AJ /B . (31) 

On introducing a new dimensionless axial variable as 

(32) 

the basic equation (14) to the Schiller's analysis of the entrance flow region may be 
recast in dimensionless form as 

Similarly the Hagenbach's correction factor may be given as 

(22b) 

where ~ = ~E is found by integration according to Eq. (33) in the limits b* = 0, 
i)* = 1. 

For a given viscosity function .9IpJ the dimensionless statement of the problem 
thus contains a single independently variable parameter for which one may choose 
either the dimensionless pressure drop A or the dimensionless volume flow rate B. 
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An exception in this respect is the power-law model 

(34) 

because of its automorphous properties12
. In this case the denominator of Eq. (33) 

can be simplified to give an expression 

(35) 

which does not contain A any more. The developed velocity profile contains also 
a single parameter: the flow index (the simplex of rheological similarity16) 

fey) = 1 - y<1+1 /n). (36) 

Consequently, the constants IXl' /32' /31' /32 are functions of n only. Likewise, the 
resulting ~ E and C are functions of n only. 

The Pseudosimilarity Approach , 

The analysis of the hydrodynamics of non-Newtonian liquids by pseudosimilarity 
approach14 may be always divided into two steps : The first step is the solution of the , 
problem for a suitable automorphous model12 of given rheological properties; 
in case of the GNF thus for the power-law model. The second step is the search 
for an adequate interpretation of more realistic models of non-Newtonian behaviour 
in terms of parameters of the corresponding automorphous model and macro­
scopic parameters of the problem in question; in case of the GNF thus through 
a suitably defined apparent flow index, n*, and an apparent coefficient of consistency, 
K*. 

The Schiller's solution to the problem of the entrance-flow region reduces to de­
termining the boundary layer thickness as a function of the axial coordinate; the 
other characteristics being deduced directly from the fully developed laminar velo­
city profile. Accordingly, having introduced the pseudoparameters of the power-law 
model we still start from the characteristics of the fully developed laminar flow 
which we introduce by the relations 

n* == _d_ln_'P_ = _d l_n_A = _ _ 1 __ 
dIn 0: dIn B p[AJjB - 3 

(37) 

K* == 'P(3n* + 14u)-n. 
, 4n* R 

(38) 
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proposed by Metzner and Reed17. These relations have proved useful for correlating 
the experimental results of the turbulent flow of non-Newtonian liquids in a tube 
using the generalized Reynolds number Re*. This group has been defined earlier17 

as 

Re*' = 4U2/K* (3n* + 1 4u)n. 
4n* R 

(39) 

The parameter K* does not appear in the normalized model of the entrance-flow re­
gion explicitly, but it is contained in the definition of the dimensionless axial co­
ordinate, Eq. (32), which may be alternatively written as 

~ Z where - R Re*' 
(40), (41) 

is equivalent to the generalized Reynolds number defined in Eq. (39). 
Since the simplifying assumptions necessitated by the Schiller's approach provide 

for the inertia effect (represented by Re*) only by the choice of the dimensionsless 
axial coordinate ~, the assumptions of the kinematic pseudosimilarity reduce to the 
following relations 

(42), (43) 

both being valid for an arbitrary 8[p]. The assumptions of the dynamic pseudo­
similarity according to Eqs (4), (5), (13) follow from Eqs (42) and (43). 

The Hagenbachs's correction factor is justly regarded as the key to each entrance­
flow problem and it is therefore important to check its presumed dynamic pseudo­
similarity in the form 

C ;:::: Ca( n*), for an arbitrary 8[pJ (44) 

in the first place. 

The Test of Pseudosimilarity 

From the above it foIlowsthat although pseudosimilarity offers a generalized approach to non­
Newtonian hydrodynamics, its character is one of a hypothesis, the validity of which has to be 
confirmed in each case by comparing the solution (mathematical solution or correlation of ex­
perimental data) for the power-law model with that for other models of the viscosity function. 
The reasons which make the Eyring model 

l' = 1'1 arsinh (DiD1) or 8 = arsinh (p) (450) 

\lnd the Bingham model 

l' = TO + IlBD or 8 = 1 + p (45b) 

Collection Czechoslov. Chem. Commim. /Vol. 38/ (1973) 



Similarity of Non-Newtonian Flows. VI. 2705 

best suited for the similarity test in the given sense (mainly for conspicuous differences between 
these two models and between each of them on one hand and the power-law model for an arbit­
rary n on the other hand) have been given in the preceding communications13 •14• 

FIG. 1 

Function n*(A) for the Eyring 1 and the 
Bingham 2 Model 
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0·06 

FIG. 2 

The Length of the Entrance Region as 
a Function of the Apparent Flow Index 

1 The Eyring model, 2 the power-law 
model, 3 the Bingham model. 
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FIG. 3 

The Hagenbach's Correction Factor as 
a Function of the Apparent Flow Index 

1 The Eyring model; 2 the power-law 
model, 3 the Bingham model. 
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The solution of the entrance-flow region for the Bingham model by the Schiller's method 
has been published recently8 and a similar solution for the Eyring model has been presented 
in an unpublished thesis9

• The results of the latter are given in the appendix. Both cases are 
those of a non-automorphous model and accordingly, A (see Eq. (27a)), was introduced as a na­
tural parameter. The relation between n* and A, given by Eq. (37), is for both models shown 
graphically in Fig. 1. The Schiller's solution represented for a given viscosity function generally 
by the relations 

/=/(y, A), 15* = 15*«(, A) , C = C(A) (46a,b,c) 

may be expressed for each of the models in the form where the independent parameter A is 
replaced by n*[AJ, see Fig. !. This form enables a comparison to be made of the solutions for 
various models of the viscosity function having identical values of n*, i.e. to test pseudosimilarity. 

The pseudosimilarity of the fully developed velocity profiles in a tube has been studied e.g. 
in cit.13 showing plots of the function yd(y) and values of y 1 for severa lvalues of n*. Fig. 2 and 3 
plot 'E(n*) and C(n*) respectively in the range of pseudopiastic behaviour, i.e. within 0 ~ n* ~ 1. 

DISCUSSION AND CONCLUSIONS 

As it is known13 the agreement of f(y, n*) for both models of the GNF in comparison 
with the power-law model is better than 5%. From Fig. 2 it is seen that eE(n*) agrees 
quite well with the power-law model in case of the Eyring model, while for the 
Bingham model the normalized lengths of the entrance-flow region at equal n* 
are substantially shorter. The kinematic pseudosimilarity in the entrance region 
may therefore be expected to exist for liquids with concave13 viscosity functions , 
while the estimate of the length of the entrance region for viscoplastic liquids with 
convex viscosity functions is much too conservative. 

A very good agreement of C(n*) for both models tested against C.(n) for the power­
law model confirms the dynamic pseudo similarity and substantiates conclusions 
that even results of more realistic hydrodynamic models of the entrance-flow for 
a power-law liquid may be used to make a pseudo similarity estimate of the excess 
pressure drop for liquids with an arbitrary type of viscosity function. 

The value of the results obtained by the Schiller's approach, as well as those ob­
tained by other methods based on the equations of motion simplified in accord with 
the theory of the boundary layer, is somewhat lessened by the fact that these equations 
are adequate only at high values of Re*. At low Reynolds numbers become important 
also the radial components in the momentum balance in addition to some other 
axial terms. This fact manifests itself in that the excess pressure drop cannot be general­
ly expressed by Eq. (21), but, instead, another correction factor, the Coette factor C', 
appears representing the excess pressure drop in the entrance region under the 
flow. The dependence of the excess losses on the Reynolds number may then be 
expressed in the simplest form as a sum of both excess losses, i.e. 

( 47) 
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Corresponding numerical analysis of the flow equation s have been made to date 
only for Newtonian liquids 6 and a power-law liquidS, 0·8 < n*. Even for a Newtonian 
liquid though certain discrepancy exists between the experimental and theoretical 
values 1S of C and C . It seems therefore premature to embark on a similar analysis 
of a non-Newtonian case. 

Aside from the original analysis for the Eyring model and the generally known 
results1.2 for the power-law model we have utilized also the results for the Bingham 
model published in papers. The application of the boundary layer results to visco­
plastic materials encounters certain difficulties, the essence of which rests in the 
physical concept of the boundary layer. Outside the boundary layer the flow is 
usually assumed to be a potential one with the corresponding pattern of the pressure, 
i.e. all components of the stress tensor being equal to zero. However, to make the 
viscoplastic liquid flow the second invariant of the deformation tensor has to exceed 
"[0. Under low stresses the viscoplastic liquid behaves like an elastic body and cannot 
transmit the isotropic pressure in the usual way. Even in cases when the simplifica­
tions imposed by the boundary layer theory were adequate, the boundary layer 
would develope under the action of substantially different pressure profile than that 
given by the Bernoulli equation for an inviscid fluid. In this respect the problems 
of the boundary layer theory of viscoplastic liquid have much in common with the 
theory of viscoelastic boundary layer10. 

The solution of the entrance region for a Bingham liquid in the proposed way 
must therefore be regarded as an illustration of a pseudosimilarity approach rather 
than a rigorous method of attacking the problem of the viscoplastic flow in the en­
trance region. 

Before concluding it remains to investigate the extent to what the results obtained 
by the Schiller's pseudosimilarity approach may serve as a criterion of applicability 
of the pseudo similarity approach to more realistic hydrodynamic models of the 
entrance-flow region. Discussion of this problem will be based on comparison of the 
Schiller's approach with its more recent modification due to Campbell and Slattery19. 
As it is known the authors have used the method to make a rather realistic prediction 
of the axial variation of pressure, the length of the entry region (99% criterion) 
and the Hagenbach's correction factor. Their results are quite comparable with more 
exact solutions of the boundary layer in a tube. 

The only difference between both methods consists in that the hypothetical validity 
of the Euler equation in the liquid core (i.e. Eq. (4)), governing the axial variation 
of P(z) is replaced by an integral balance of the mechanical energy in the following 

form 

d fR dP UR
2 fR ( av) 1e-. v;rdr = - --- + "[,z - ~ rdr. 

dz 0 dz 2 0 ar 
(48) 
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This equation enables the pressure drop to be eliminated by combining Eqs (48) 
and (7) and the thickness of the boundary layer as well as some other characteristics 
of the entrance-flow region to be determined by integration of a single ordinary 
differential equation in ~ and b*. This equation contains numerical constants depending 
on the developed velocity profile and generally on non-linear viscosity function 8[p J. 

In boths methods compared we had made identical assumptions regarding the 
velocity profile in the boundary layer, which are equivalent to the assumption of a li­
near radial profile of the shear stress 't'rz in the boundary layer. Since the pseudo­
similarity approach compares solutions corresponding to n* = idem for a deVeloped 
laminar profile (which ensures also a very close similarity of the velocity profiles 
in the boundary layer), the individual terms in Eq. (48) will therefore have very 
similar values even under considerably different viscosity functions. 

Having thus shown the utility of the pseudosimilarity approach for the Schiller's 
method one can expect that similar results will be achieved also with the Campbell­
-Slattery method since their differences do not touch the prerequisites of the pseudo­
similarity approach but merely describe more adequately the relation between the 
variations of the kinetic energy and the pressure changes in the process of formation 

TABLE I 

The Results of a Numerical Solution for the Eyring Model 

A 0·1000 0·7000 1·0000 1·4000 1·8000 2·6000 4·0000 5·0000 
B 0·1001 0·7388 1·1154 1·7281 2'5318 5·1169 16·952 40·308 
p(A) 0·1001 0·7586 1·1752 1·9043 2·9422 6·6947 27·290 74·203 
n* 0·9978 0·9033 0·8233 0·7104 0·6067 0·4476 0·2907 0·2292 

1'1 1·9994 1·9736 1·9476 1·9028 1·8498 1·7345 1·5519 1·4530 
<Xl 0·3332 0·3279 0·3226 0·3129 0·3011 0·2730 0·2213 0·1891 
<Xz 0·1666 0·1626 0·1586 0·1515 0·1428 0·1225 0·0868 0·0663 

PI 0·4665 0·4605 0·4543 0·4430 0'4288 0·3938 0·3256 0·2806 

Pz 0·1333 0·1306 0·1278 0·1227 0·1164 0·1015 0·0738 0·0570 

o· for C: 
(0'2) 0·00197 0·00310 0·00357 0·00404 0·00436 0·00458 0·00425 0·00383 
(0'4) 0·01018 0·01233 0·01328 0·01408 0·01440 0·01395 0·01171 0·01001 
(0,6) 0·02893 0·03146 0·03241 0·03279 0·03225 0·02937 0·02274 0·01865 
(0·7) 0·04370 0·04603 0'04666 0·04635 0·04487 0·03980 0·02975 0·02396 
(0,8) 0·06276 0·06457 0·06461 0·06316 0·06030 0·05222 0·03783 0·02998 
(0'9) 0 ·08652 0·08743 0·08655 0·08348 0·07873 0·06675 0·04700 0·03672 
(1,0) CE 0·11517 0·11477 0·11261 0·10739 0·10021 0·08339 0·05727 0·04416 

C 1·1549 1·0588 0'9914 0·9024 0·8184 0·67425 0-49207 0·40465 
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of the velocity profile which are (for a given thickness of the boundary layer) super­
imposed in both methods in the same manner. 

This is evidenced also by direct test of pseudosimilarity of the flow in the entrance 
region for the Campbell-Slattery method. This method; however, can be modified 
succesfully so as to involve some additional important aspects of the non-Newtonian 
entrance-flow region, and, in particular, the dissipation of mechanical energy by the 
elongation flow of the liquid core. Since these possibilities will be examined in our 
next paper, we have confined ourselves here to the presented qualitative analysis. 

APPENDIX 

The Characteristics of the Flow in a Tube for the Eyring Model 

The viscosity function of the Eyring model is given by 

p = sinh (S) = "LS(2i-l)/ (2i - 1)1 (Dla,b) 

The summation sign in this equation (which is absolutely convergent for S ;;:;:; 1) as well as those 
in the foHowing text indicate summation over all natural numbers. 

The individual characteristics of a fully developed flow in a tube introduced in the paper 
take for the Eyring model the following form as functions of the radial dimensionless coordinate 
y = r/ R and the dimensionless pressure drop A = 7:w/ 7:(. 

B(A) = (cosh (A) - 2 - (sinh (A) - cosh (A) - 1)/A)/A)/A = 

A2i - 1 

= I; (2i + 2) (2i - 1)1 

I(y, A) = SeA) (cosh (A) - cosh (Ay»/ A2 

= SeA) I;A2i:-l(1 - y2i)j(2i)1 

where SeA) is an auxiliary function 

SeA) = cosh (A) - 1 

f: fey) y dy = U/Umax = S(A)/A 

I;A2i - 2 /(2i - 1)1 
1'(1) = sinh (A)jB = "LA21 2j[(2i + 1) (2i - 1)1] 

t/(Y) dy = (S(A)jA 2) (cosh (A) - sinh (A)/A) = 

= (S(A)jA 2) "LA2ij«2i + 1)(2i - 1)1) 
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f:2(y) dy = (S2(A)/A4) (cosh2(A) - 3/2 cosh (A) sinh (A)/A + 1/2) = 

= S2(A) I: A2j-2 ± 2i«2i + 2 + (2j - 2i + 3) (2j + 3» 
j = 1 i=1 (2j+3)(2i+ I)! (2j- 2i+ 3)! 

f/ 2
(Y)YdY = 

= (S2(A)/A4) (cosh2(A)/2 - 2 cosh (A) . «sinh (A) - (cosh (A) / A) + 

+ 1/4 + sinh (A). cosh (A) / (2A) - (cosh2(A) + sinh2(A) - 1) /(8A 2» 

= S2(A) I: A2j-2 ± i(l/(2i + 2) - l/«(j + 2) (2j - 2i + 4») 
j=l i=l (2i)!. (2j - 2i+ 2)! 

n*(A) = l / (sinh (A) / B(A) - 3) = 

'LA2i-2 /«2i + 2). (2i - 1)!) 

'LA2i 2/«2i + 2). (2i - 2)!)' 

(D7a) 

(D7b) 

(D8a) 

(D8b) 

(D9a 

(D9b) 

The differential equation (33) was integrated with the parameters defined by the above equations 
for a number of values of A and some results are summarized in Table I. 

LIST OF SYMBOLS 

A 
B 
C 
C' 
D 
D, 
l(y) 
K 
K* 
L 

n* 

R 
Re'" 
U 

dimensionless pressure drop, Eq. (27a), (1) 
dimensionless flow rate, Eq. (27b), (1) 
the. Hagenbach's correction factor, Eq. (21), (1) 
the Couette correction factor, Eq. (47), (1) 
deformation rate-scalar, (s -1) 
material constant of the GNF, Eq. (26), (s-1) 
normalized velocity in the boundary layer, Eq. (9), (1) 
consistency coefficient for the power-law model of the GNF, (dyn cm - 2 sn) 
dimensional parameter of automorphous models, Eq. (38), (dyn cm- 2 sn) 
tube length, (cm) 
flow index of the power-law model of the GNF, (1) 
apparent flow index in automorphous models, Eq. (37), (1) 
isotropic pressure, (dyn cm - 2) 
excess pressure drop in the entrance region Eq. (21), (dyn cm - 2) 
normalized viscosity function of the GNF, Eq. (26), (1) 
volume flow rate in the tube, (cm3 s-"1) 
radial coordinate, (cm) 
radius of tube, (cm) 
non-Newtonian flow Reynolds number in a tube, Eq. (41), (1) 
average velocity in a tube, (cm S-1) 
maximum velocity in a tube, (cm s-1) 
velocity components in radial coordinates, (cm s-1) 
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vD(r) fully developed velocity profile of non-Newtonian laminar flow in a tube, (cm s -1) 
vo(z) axial velocity in the potential core of the entrance region, (cm s -1) 

Y normalized radial coordinate in the boundary layer, Eq. (10), (1) 
radial coordinate, (cm) 

zE length of the entrance region, (cm) 
(Xl,2 constants of the Schiller's model of the entrance region, Eqs (15), (16), (1) 
Pl ,2 constants of the Schiller's-model of the entrance region, Eqs (17), (18), (1) 
)'1 constants of the Schiller's-model of the entrance region, Eq. (30), (1) 
o local boundary layer thickness, (cm) 
0* normalized boundary layer thickness, Eq. (14), (1) 
3[p] normalized viscosity function of the GNF, E.q. (26), (1) 
Q density, (g cm - 3) 

,[D] viscosity function of the GNF, (dyn cm - 2) 

'zr shear stress in the tube, (dyn cm - 2) 

'[ material constant of the GNF, Eq. (26), (dyn cm - 2) 

'0 yield stress material constant of a viscoplastic liquid, (dyn cm - 2) 

'w shear stress on the tube wall, (dyn cm- 2
) 

SJI[\5] shear stress on the tube wall under laminar flow without wall effects, consistency vari-
able, Eq. (25), (dyn cm - 2) 

\5 consistency variable. Eq. (25), (s -1) 

Subscript "a" indicates a functional dependence for an automorphous (power-law) model. 
The square bracketts indicate the material-and-related functions. 
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